
Universidade Estadual de Montes Claros
Pró-reitoria de Pós-Graduação

Programa de Pós-Graduação em Modelagem
Computacional e Sistemas

Victor de Freitas Arruda

UM ESTUDO COMPARATIVO DE
ALGORITMOS BASEADOS EM

APRENDIZADO DE MÁQUINA PARA
CLASSIFICAÇÃO DE TRÁFEGO EM REDES

DEFINIDAS POR SOFTWARE

Montes Claros - MG

Dezembro de 2023

Victor de Freitas Arruda

UM ESTUDO COMPARATIVO DE ALGORITMOS
BASEADOS EM APRENDIZADO DE MÁQUINA PARA

CLASSIFICAÇÃO DE TRÁFEGO EM REDES
DEFINIDAS POR SOFTWARE

Dissertação apresentada ao Mestrado Profis-
sional em Modelagem Computacional e Sis-
temas, da Universidade Estadual de Montes
Claros, como exigência para obtenção do grau
de Mestre em Modelagem Computacional e
Sistemas.

Orientador: Dr. Nilton Alves Maia
Coorientador: Dr. Maurílio José Inácio

Montes Claros - MG
Dezembro de 2023

Victor de Freitas Arruda
UM ESTUDO COMPARATIVO DE ALGORITMOS BASEADOS EM APRENDI-

ZADO DE MÁQUINA PARA CLASSIFICAÇÃO DE TRÁFEGO EM REDES DEFINI-
DAS POR SOFTWARE/ Victor de Freitas Arruda. – Montes Claros - MG, Dezembro
de 2023-

30 p. : il. (algumas color.) ; 30 cm.

Orientador: Dr. Nilton Alves Maia

Dissertação (Mestrado) – Universidade Estadual de Montes Claros – Unimontes
Centro de Ciências Exatas e Tecnológica
Programa de Pós-Graduação em Modelagem Computacional e Sistemas, Dezembro
de 2023.
1. Redes Definidas por Software. 2. Machine Learning. 3. Classificação de Tráfego.

I. Maia, Nilton Alves. II. Inácio, Maurílio José. III. Universidade Estadual de Montes
Claros. IV. Programa de Pós-Graduação em Modelagem Computacional e Sistemas.
V. Classificação de Tráfego em Redes Definidas por Software.

UNIVERSIDADE ESTADUAL DE MONTES CLAROS

PROGRAMA DE PÓS-GRADUAÇÃO EM MODELAGEM COMPUTACIONAL E SISTEMAS

FOLHA DE APROVAÇÃO

Um estudo comparativo de algoritmos baseados em Aprendizado de Máquina para

classificação de

Trabalho de conclusão defendido e aprovado pela banca examinadora constituída por:

Departamento de Ciências

Departamento de Ciências Exatas

Departamento de Ciências da Computação

Departamento de Ciências Exatas

Montes Claros,

UNIVERSIDADE ESTADUAL DE MONTES CLAROS
PRÓ-REITORIA DE PÓS-GRADUAÇÃO

GRADUAÇÃO EM MODELAGEM COMPUTACIONAL E SISTEMAS

FOLHA DE APROVAÇÃO

Um estudo comparativo de algoritmos baseados em Aprendizado de Máquina para

classificação de Tráfego em Redes Definidas por Software

Victor de Freitas ArrudaVictor de Freitas ArrudaVictor de Freitas ArrudaVictor de Freitas Arruda

Trabalho de conclusão defendido e aprovado pela banca examinadora constituída por:

Dr. Nilton Alves Maia – Orientador

Departamento de Ciênciasda Computação – UNIMONTES

Dr. Maurílio José Inácio – Coorientador

Departamento de Ciências Exatas – UNIMONTES

Dr. Allysson Steve Mota Lacerda

Departamento de Ciências da Computação – UNIMONTES

Dr. Marcel Veloso Campos

Departamento de Ciências Exatas – UNIMONTES

Dr. Rômerson Deiny Oliveira

University of Bristol (UK)

Montes Claros, 04 de Dezembro de 2023

GRADUAÇÃO EM MODELAGEM COMPUTACIONAL E SISTEMAS

Um estudo comparativo de algoritmos baseados em Aprendizado de Máquina para

Trabalho de conclusão defendido e aprovado pela banca examinadora constituída por:

mauri
Carimbo

Agradecimentos

Em primeiro lugar, gostaria de agradecer à Deus, que sempre me ajuda a alcançar
meus objetivos de buscar aprender cada vez mais.

Agradeço também ao meu orientador Dr. Nilton Alves Maia e ao meu coorientador
Dr. Maurílio José Inácio, pela oportunidade, direcionamento durante o desenvolvimento
desta pesquisa, dando apoio durante todo o processo de construção desse trabalho.

Aos meus professores do PPGMCS pelas correções e ensinamentos que me permiti-
ram apresentar um melhor desempenho no meu processo de formação profissional ao longo
do curso.

Agradeço aos meus pais Maria Lúcia de Freitas Arruda e Sebastião Pereira de
Arruda, que me deram apoio e incentivo nas horas difíceis, força e amor incondicional.

À Universidade Estadual de Montes Claros, juntamente com o PPGMCS, pela
oportunidade de cursar o mestrado e por ter oferecido um ambiente criativo e amigável.

Resumo
Atualmente a internet tornou-se uma ferramenta muito importante para a troca de in-
formações, fazendo com que ela necessite de um bom funcionamento. Nesse contexto, a
adoção de Redes Definidas por Software viabiliza o desenvolvimento de novas técnicas
para aprimorar o gerenciamento e desempenho das redes atuais. Como as redes definidas
por Software separam o plano de dados do plano de controle, a lógica de encaminhamento
é centralizada em um ou mais controladores, os quais possuem visão de grande parte da
rede, ou até mesmo global quando são utilizados em conjunto. Com base na classificação
do fluxo de tráfego entrante da rede pode-se implementar políticas de segurança, controle
de qualidade de serviço e engenharia de tráfego, visando sempre melhorar o gerenciamento
da rede. Este trabalho apresenta três artigos, os quais apresentam um estudo compara-
tivo de algoritmos de aprendizado de máquina utilizando-se principalmente as métricas
convencionais (acurácia, precisão, revocação e f1-score), onde verifica-se o desempenho de
algoritmos de aprendizado de máquina em duas topologias propostas.

Palavras-chave: Redes Definidas por Software; Aprendizado de Máquina; Gerenciamento
de redes; Qualidade de Serviço; Engenharia de Tráfego.

Abstract
Currently, the internet has become a very important tool for exchanging information,
making it necessary for it to function properly. In this context, the adoption of Software
Defined Networks enables the development of new techniques to improve the management
and performance of current networks. As Software defined networks separate the data
plane from the control plane, the forwarding logic is centralized in one or more controllers,
which have a view of a large part of the network, or even a global view when used together.
Based on the classification of the network’s incoming traffic flow, security policies, service
quality control and traffic engineering can be implemented, always aiming to improve
network management. This work presents three articles, which present a comparative study
of machine learning algorithms using mainly conventional metrics (accuracy, precision,
recall and f1-score), where the performance of machine learning algorithms is verified in
two proposed topologies.

Keywords: Software Defined Networks; Machine Learning; Traffic Engineering; Quality
of Service; Networks Management.

Sumário

1 INTRODUÇÃO . 8

2 ARTIGO IJER EM INGLÊS . 11

3 CONSIDERAÇÕES FINAIS . 30

8

1 Introdução

Após o surgimento da internet, houve uma revolução na comunicação e acesso à
informação, tornando as redes de computadores muito importantes para o dia a dia. Sendo
elas utilizadas das mais diversas formas e por praticamente todas as pessoas, seja direta
ou indiretamente, a internet está sempre lá e estamos sempre conectados.

Assim torna-se importante que as redes de computadores estejam funcionando
de forma adequada, pois estão sujeitas a diversos fatores, como por exemplo, ataques
maliciosos, interrupção de serviços, sobrecargas, e outros fatores. Ademais, atualmente
a configuração de regras na rede é individual para cada dispositivo, na qual os usuários
utilizam comandos de gerenciamento que são específicos de cada fabricante, o que torna
difícil a evolução de tecnologias utilizadas nas redes de computadores.

Nos dias de hoje, a quantidade de aplicações que consomem recursos da rede está
aumentando, o que produz escassez de recursos de rede e faz com que haja a busca pelo
desenvolvimento de novas tecnologias que melhorem o desempenho da rede. Dessa forma, a
identificação dos fluxos de tráfego entrante é de grande importância para o gerenciamento,
controle de tráfego e detecção de anomalias na rede.

Nesse cenário, as Redes Definidas por Software podem facilitar o desenvolvimento
de técnicas que melhoram a qualidade de serviço da rede e enfrentar melhor os problemas
de gerenciamento que ocorrem nas redes IP atuais. As redes definidas por software são
caracterizadas pela separação do plano de dados e de controle, sendo que a lógica de
encaminhamento de pacotes é centralizada no plano de controle (controlador). Assim, as
alterações na lógica de encaminhamento são realizadas apenas no controlador que possui
uma visão de grande parte da rede, ou até mesmo global quando os controladores são
utilizados em conjunto.

Logo, a classificação de tráfego da rede, que visa classificar os fluxos de tráfego
por seus aplicativos de geração, pode desempenhar um papel importante na segurança
e gerenciamento da rede, como por exemplo, no controle de qualidade de serviço (QoS),
interceptação legal, detecção de intrusão, sobrecargas e ataques maliciosos. A classificação
de tráfego e a caracterização de aplicações de rede estão se tornando cada vez mais
importantes para aplicações de engenharia de tráfego, monitoramento de segurança e
qualidade de serviço.

Nesse contexto, durante a realização deste trabalho foram realizados três artigos,
os quais apresentaram estudos em classificação de tráfego em redes definidas por software.

O primeiro artigo denominado "Classificação de Tráfego em Redes Definidas por

Capítulo 1. Introdução 9

Software utilizando SVM e MLP: Um Estudo Comparativo"foi apresentado no XXIV
ENMC - Encontro Nacional de Modelagem Computacional e publicado em seus
anais.

O primeiro artigo teve como objetivo realizar um estudo comparativo dos algoritmos
SVM e MLP usando ADAM e LBFGS para classificação de tráfego entrante em uma
rede SDN. Os desempenhos dos classificadores foram avaliados considerando-se os valores
da acurácia, precisão, revocação e F1-score. Verificou-se que o SVM obteve os melhores
resultados.

O segundo artigo, denominado "Classificação de tráfego entrante em uma topologia
SDN", foi publicado em 2021 na revista Cereus (ISSN: 2175-7275, Edição: v.13 n.3) e
está disponível no link: http://ojs.unirg.edu.br/index.php/1/article/view/3426.

No segundo artigo foi proposto um estudo comparativo de algoritmos de aprendizado
de máquina para a classificação do tráfego entrante em uma topologia SDN. O desempenho
dos classificadores foi avaliado através das métricas acurácia, precisão, revocação e f1-score,
além dos tempos de treinamento e validação dos modelos. O algoritmo Random Forest
foi considerado o mais eficiente no cenário de classificação de tráfego considerado. Ele
alcançou valores semelhantes aos melhores resultados com relação às métricas acurácia,
precisão, revocação e f1-score, mas obteve valores inferiores nos tempos de treinamento e
validação.

O terceiro artigo, denominado "A comparative study of Machine Learning-Based
Algorithms for traffic classification in Software-defined Networks"é apresentado em Inglês
no capítulo 2 desse documento. O artigo foi submetido e aceito na revista International
Journal of Education and Research (IJER) (ISSN 2411-5681).

No terceiro artigo foi realizado um estudo comparativo em duas topologias SDN
diferentes utilizando os algoritmos de redes neurais artificiais do tipo Multilayer Perceptron
(utilizando o ADAM e o LBFGS), Máquinas de Vetores de Suporte, NaiveBayes, K-
NearestNeighbor, Random Forest e o Ensemble (votação). A análise estatística mostrou
que na topologia 1, o Random Forest se destacou nas métricas convencionais acurácia,
precisão, revocação, F1-score. Na topologia 2, o Random Forest obteve melhor Acurácia e
Revocação, a RNA do tipo MLP com o ADAM obteve melhor Precisão e o SVM obteve
melhor F1-Score. No tempo de treinamento do modelo, o KNN e o NaiveBayes obtiveram
resultados semelhantes nas duas topologias. Em relação aos melhores tempos de validação
do modelo, o NaiveBayes obteve os melhores resultados nas duas topologias. Porém, como
o NaiveBayes obteve resultados comparativamente inferiores, principalmente na topologia
2, em relação as métricas convencionais, conclui-se que o Random Forest foi o algoritmo
com melhor resultado geral neste trabalho.

Nos três trabalhos realizados observou-se a possibilidade da classificação de tráfego

http://ojs.unirg.edu.br/index.php/1/article/view/3426

Capítulo 1. Introdução 10

entrante em topologias de redes definidas por software, sendo que o Random Forest foi o
algoritmo que mais se destacou.

A COMPARATIVE STUDY OF MACHINE LEARNING-BASED ALGORITHMS

FOR TRAFFIC CLASSIFICATION IN SOFTWARE-DEFINED NETWORKS

ABSTRACT

Computer networks have become a vital tool for information transportation. Use of Software-

Defined Networks (SDN) can enable the development of techniques to enhance network

performance in terms of security, quality of service, and traffic engineering. The

implementation of these techniques can be facilitated by classifying incoming network traffic.

This study conducted a comparative analysis on two different SDN topologies using artificial

neural network algorithms, namely Multilayer Perceptron (using ADAM and LBFGS), Support

Vector Machines, Naive Bayes, K-Nearest Neighbors, Random Forest, and Ensemble (voting).

The statistical analysis revealed that in topology 1, Random Forest stood out in the

conventional metrics of accuracy, precision, recall, and F1-score. In topology 2, Random

Forest achieved better accuracy and recall, MLP with ADAM had better precision, and SVM

had better F1-score. Regarding model training time, KNN and Naive Bayes produced similar

results in both topologies. As for the best model validation times, Naive Bayes yielded the best

results in both topologies. However, since Naive Bayes showed comparatively inferior results,

especially in topology 2, in terms of conventional metrics, it is concluded that Random Forest

was the algorithm with the best overall performance in this study.

Key-words: Machine Learning, Software Defined Networks, Traffic Classification.

11

2 Artigo IJER em inglês

1.0 INTRODUCTION

With the creation of computer networks, there was a revolution in access to information,

making it very important in everyday life. They are used as support in the most varied activities

and have become a vital tool for the transport of information in today's world.

Therefore, networks must function properly as they are susceptible to various factors

such as overload, service interruptions, and malicious attacks, among others. Additionally,

developing new technologies within traditional IP networks is challenging. These networks

consist of multiple devices, typically comprised of proprietary software from specific

manufacturers, running on proprietary hardware. This limits the creation and development of

new technologies for current networks, making them inflexible (Cardoso, Silva, Rocha, and

Sousa, 2017).

In present days, there has been an increase in the number of applications that consume

traffic, which ends up producing a scarcity of network resources. This makes it necessary to

search for the development of new technologies that improve network performance. Thus, the

identification of incoming traffic flows is of great importance for the management, traffic

control, and detection of anomalies in the network (Ding, Yu, Peng, and Xu, 2013).

In this scenario, Software Defined Network (SDN) can facilitate the development of

techniques to improve the network quality of service (QoS). The SDN is characterized by the

separation of the data plane and the control plane, and the packet forwarding logic is centralized

in the control plane (controller). Therefore, changes in the forwarding logic are performed only

in the controller that has a view of a large part of the network, or even a global one (Bisol, Silva,

Machado, Granville, and Schaeffer-Filho, 2016).

The SDN networks are a new paradigm in telecommunications and computer networks.

They are intended to help resolve management issues in today's IP networks. As network

administrators are responsible for configuring and applying high-level policies to a wide range

of events that may occur, SDN networks offer hope for using more convenient methods for

network configuration and management. The SDN architecture is divided into three layers, with

the lowest level being the data plane, the intermediate level being the control plane and the

highest level being the application plane. The data plane simply acts as packet forwarding

hardware, it communicates with the control plane through the southbound interface. This

interface enables the communication between the programmable switches (SDN switches) and

the controller, that is, the controller uses a southbound interface from the SDN-enabled switch

devices to connect to the data plane. The control plane acts as the “brain” of the network. The

control plane is easily programmable and provides an abstraction of the underlying network

infrastructure. This allows switches to become simpler devices as they accept instructions from

the centralized controller. In this manner, the network administrator does not need to configure

the network devices individually and the routing and forwarding decisions are implemented

through the centralized SDN controller (Kokila, Selvi, and Govindarajan, 2014). The

communication between the network applications and the controllers is maintained by the

northbound interface, located in the control plane. The northbound interface determines how to

express operational tasks and network policies, and also how to convert them into a format the

controller can understand (Kim and Feamster, 2013) (Farhady, Lee, and Nakao, 2015).

Capítulo 2. Artigo IJER em inglês 12

The separation of data and control planes, provided by SDN networks, enables the

development of applications aimed at improving network management. In this manner, it is

possible to develop, for example, applications to solve security, quality of service (QoS), and

traffic engineering problems. These problems can be better solved if it is possible to obtain

more precise information about the incoming traffic on the network, which can be obtained

from its classification.

According (to Bakker, Ng, Seah, and Pekar, 2019), traffic classification describes the

process of identification and the pairing packet flows for some type of traffic (malicious traffic,

low-priority traffic, network applications, etc.). This process depends on information extracted

from the traffic that serves as input to the traffic classification algorithm. The purpose of traffic

classification is to improve network resource management, network security, and QoS. The

precise traffic classification, done promptly is becoming more and more important for many

wired and wireless networking applications such as traffic engineering, security monitoring,

and QoS (Fan and Liu, 2017). The traffic classification can be performed using port numbers,

payload inspection, and machine learning techniques.

The traffic classification by port number relies only on mapping applications to identify

known port numbers. Unfortunately, over time, traffic classification techniques based on port

numbers have become imprecise and some limitations have become obvious. A large number

of applications appeared that did not have registered port numbers and many of them used

dynamic port negotiation mechanisms to hide from firewalls and network security tools (Fan

and Liu, 2017) (Amaral, et al., 2016).

The classification based on payload inspection, also known as Deep Packet Inspection

(DPI), is currently one of the most widely used techniques (Amaral, et al., 2016). The DPI

systems use the predefined signatures of packets or flows to describe which traffic type the

packet or flow belongs to. In this way, DPI systems inspect the payload of packets of a given

flow to match the packet or flow with predefined signatures, and the matching process is always

done by regular expressions. Like payload-based methods need to examine the payload of every

packet, sometimes some issues such as privacy laws and cryptography that can lead to an

inaccessible traffic payload. On the other side, DPI results in high computational costs and

requires manual maintenance of signatures (Fan and Liu, 2017).

The classification methods based on machine learning can overcome some of the

limitations of port and payload-based approaches. More specifically, machine learning

techniques can classify Internet traffic using application protocol-independent statistics, like

flow duration, packet length variance, maximum or minimum segment size, window size, round

trip time, and packet arrival time. Thus, it can lead to lower computational costs and identify

encrypted traffic easily (Fan and Liu, 2017). The traffic classification can be performed using

supervised or unsupervised learning. In supervised learning, is necessary to obtain labeled

training datasets on which new applications can appear. Unsupervised learning is typically used

for clustering tasks, where algorithms group data into different clusters according to similarities

in feature values. The goal is to identify unknown relationships in the data by finding patterns

of similarity between many observations (Amaral, et al., 2016). The classifiers used in this work

use supervised learning. In particular, were used, Ensemble (voting), Random Forest, Support

Vector Machine (SVM), Naive Bayes, K-Nearest Neighbor (KNN), and artificial neural

Capítulo 2. Artigo IJER em inglês 13

networks (ANNs) type Multi-Layer Perceptron (MLP) using ADAM and Limited-Memory

Broyden-Fletcher-Goldfarb-Shanno (LBFGS).

The ANNs of type MLP allow for solving complex problems, that are not possible to be

solved by the basic model of neurons. The internal neurons of MLP are very important in the

ANN, because it is proven that without them it is impossible to solve linearly non-separable

problems (Ferreira, 2004). In this type of network, every layer has its specific function. Thus,

each neuron calculates a weighted sum of the inputs and passes this sum in the form of a

bounded nonlinear function. At the mesostructure level, there are two or more layers with a

feedforward connection (Vieira and Bauchspiess, 2016). It can be said that with the addition of

one or more intermediate (hidden) layers, the computational power of non-linear processing

and storage of the network is increased. In a large enough hidden layer, it is possible to represent

any continuous function of the inputs. The outputs of the neurons of each intermediate layer are

used as input for the posterior layer

The Support Vector Machine (SVM) was developed by Vapnik (1995), from the studies of

Vapnik and Chervonenkis (1971) and Boser, Guyon, and Vapnik (1992). Classification through

SVM consists of the optimal separation of a group of data, regardless of its dimensionality,

through a quadratic programming problem that allows a good generalization (Vapnik, 1998).

This process causes the SVM to find a global minimum on the cost surface, which is considered

an advantage of the method (Haykin, 2001).

Naive Bayes is a machine learning algorithm, where the classifier learns through a

document classification algorithm (Bužic and Dobša, 2018). The Naive Bayes classifier is

based on two basic hypotheses: 1) the characteristics are independent of each other, and 2) each

feature has the same prominence (Wu, et al., 2018). The Naive Bayes classifier takes an

arbitrary number of continuous or categorical variables and classifies an instance to belong to

one of several classes. Therefore, it is applied to learning tasks where each instance x is

described by a conjunction of attribute values and the target function f(x) (Vaidya, Shafiq, Basu,

and Hong, 2013). This classifier is based on the Bayes theorem. The Efficiency in modeling

and prediction is an undoubted advantage over other classification algorithms, which is due to

the possibility of easy parallelization, especially important for large datasets (Bužic and Dobša,

2018).

The K-Nearest Neighbor (KNN) is an algorithm that uses clustering to classify data, in

this way, it can use supervised learning and unsupervised learning to perform classification, in

the context of this work supervised learning was used it requires training data and a predefined

k value to find the k closest data based on distance calculation (Chomboon, Chujai,

Teerarassammee, Kerdprasop, and Kerdprasop, 2015). The KNN method, although simple,

generally can match and even outperform more sophisticated and complex methods in terms of

generalization error. One of the biggest problems with this classifier, however, is to fix the

appropriate value of k (García-Pedrajas, Romero del Castillo, and Cerruela-García, 2017). The

KNN builds predictions directly from the training dataset, which is stored in memory. To

classify unknown data, for example, KNN finds the set of k training data objects closest to the

input data instance by a distance calculation and assigns the maximum voted classes from these

neighboring classes (Singh, Halgamuge, and Lakshmiganthan, 2017).

The Random Forest classifier uses multiple decision trees during the training phase and

produces the average prediction of individual trees (Edla, Mangalorekar, Dhavalikar, and

Capítulo 2. Artigo IJER em inglês 14

Dodia, 2018). To predict the target value for a new instance of data, the new observation is fed

through all the classification trees in the Random Forest. The prediction numbers for a class

realized by each of the classification trees are counted. Then the class with the maximum

number of votes is returned as the class label for the new neighboring data instance (Singh,

Halgamuge, and Lakshmiganthan, 2017). Some properties that make Random Forest a very

good classification model for large datasets, as (a) no need to prune trees, (b) automatic

generation of precision and variable importance, (c) not being very sensitive to outliers in the

training data, and (d) be an easy model to define parameters (Jedari, Wu, Rashidzadeh, and

Saif, 2015).

The Ensemble methods combine predictions from several basic classifiers and provide

the final prediction. The ensemble model combines a set of classifiers to create a single

composite model that provides better accuracy. Ensemble methods can be defined as

committee, classifier fusion, combination or aggregation, voting, etc. Many researches show

that forecasting a composite model provides better results compared to forecasting a single

model (Gandhi and Pandey, 2015). The ensemble method performance depends on the accuracy

of the individual classifiers and the number of base classifiers included (that is, the more

classifiers we include, the better the performance of the ensemble classifier) (Saqlain,

Jargalsaikhan, and Lee, 2019). Ensemble methods can be classified as homogeneous or

heterogeneous Ensemble methods. Homogeneous Ensemble methods use a single learning

algorithm on different training datasets to build multiple classifiers such as Bagging, Boosting,

Random Subspaces, and Random Forest, etc. Heterogeneous Ensemble methods use various

machine learning algorithms and manipulate training datasets to make various models. Some

of the heterogeneous methods are voting, stacking, etc. (Gandhi and Pandey, 2015). In this

work, we used the voting heterogeneous ensemble method. In the voting method, each base

classifier's prediction is counted as a vote for a class, and the final class assigned is the one that

garners the most votes (Badhani and Muttoo, 2019).

In order to verify whether there is a significant difference between the results of the

classifiers used, Friedman's test and Conover's post-hoc test were applied. The Friedman test is

non-parametric, that is, it does not assume a distribution from the performance indicators, so

this test is used to verify whether the analyzed data are statistically similar. Therefore, the null

hypothesis (H0) was proposed, which assumes that the distributions of the k samples are

identical, and the Alternative Hypothesis (H1), which states that the distributions of the k

samples differ in location (Firmino, 2015). If the null hypothesis is rejected, it is possible to use

post-hoc tests to verify which of the analyzed groups are different from each other. In this case,

Conover's post-hoc test was used, which is capable of finding statistically significant

differences between the results of the classifiers.

This work proposes the implementation of an incoming applications traffic

classification system in two SDN topologies. The applications are VoIP, Telnet, Quake3, DNS,

CSi, CSa, Video and Web. To perform the classification, SVM, KNN, Naive Bayes, Random

Forest and Ensemble, and MLP-type ANN models (using ADAM and LBFGS) were compared.

The next sections of this article are organized as follows: in section 2 the methodology

is presented. Section 3 presents the results obtained from the experiments. In section 4 the

results obtained are discussed, and then in section 5, the conclusions about the work are

presented.

Capítulo 2. Artigo IJER em inglês 15

2.0 METHODOLOGY

Initially, traffic is measured in the SDN topology. The data resulting from the traffic

measurement is stored in a file. These data are used by machine learning algorithms to perform

classifications. A summary of the methodology used in this work is shown in Figure 1.

Figure 1- Methodology used in this work

The simulation of the SDN topology was performed using the Mininet software

(Mininet Team, 2021) running on the SND Hub platform (SDN Hub Team, 2021). The code

for implementing SDN topologies on Mininet was written in Python language. The software D-

ITG (Distributed Internet Traffic Generator) (Botta, Dainotti, and Pescapé, 2012) software was

used to generate application traffic from hosts. To capture the traffic, tcpdump was used. It is a

libpcap-based, API to capture network packets during their traffic. With the traffic captured,

tcpdump generates a file in pcap format, this file is transformed into csv by tshark, which is an

implementation of Wireshark in text mode, it is very similar to tcpdump, but it allows the

conversion of the pcap file to csv (which is used in this work).

The steps used to perform the traffic measurement are described in Figure 2. First, the

floodlight controller is started. Then the SDN topology is started in the Mininet software. The

tcpdump application starts to capture the traffic passing through the network interfaces. With

the SDN topology working, D-ITG starts to generate traffic on the network. As tcpdump doesn't

convert the pcap file to csv, tshark is used to convert the file to csv type. The promed

(measurement program) processes the csv file and generates the traffic measurement.

Figure 2- Steps for performing traffic measurement

In the SDN network topologies considered in this work, the hosts were configured as

receivers and traffic generators. Every generator host transmits traffic packets from a different

network application. The selected network applications were Voip, Telnet, Quake3, DNS, CSa

(Counter Strike Active), CSi (Counter Strike Inactive), Web, and Video. VoIP is a voice over

IP application. Telnet is an application that allows remote access to any machine running the

server module. Quake3 is a first-person shooter video game. DNS simulates an application that

Capítulo 2. Artigo IJER em inglês 16

is responsible for locating and translating website addresses typed into browsers into IP

numbers. CSa and CSi are first-person shooter games that simulate when the user is active and

inactive respectively. Web and Video simulate web and video applications respectively.

In the promed was used the pandas library (Pandas Development Team, 2021) and the

spark (Commiters, 2021) for processing large amounts of data. The measurement generated

was done by applying metrics to the information present in the packet headers. At the end of

the processing, a new file was generated and this measurement file is used as input in the

classification algorithms.

The SDN topology was in operation for 1 hour, so each traffic measurement lasted 10

seconds, and in the end, 360 measurement patterns were obtained. The three hundred and sixty

measurement standards for each application were separated into two sets of data, with seventy-

five percent (75%) being used for algorithm training and the other twenty-five percent (25%)

for validation.

The Attributes of measurement patterns used by machine learning algorithms during

training and validation were average delay, average jitter variation, throughput, average packet

rate per second, number of transmitted packets, and number of transmitted bytes. The outputs

of the algorithms are known network applications (traffic measurement classes). The classifiers

were selected based on other existing works in the literature. All machine learning algorithms

were implemented using the Python language and the library Scikit-learn (Pedregosa, et al.,

2011).

The MLP network with ADAM was configured with three (3) hidden layers with one

hundred (100), fifty (50), and fifty (50) neurons, respectively. Furthermore, the model used the

hyperbolic tangent activation function (tanh) and the penalty parameter (alpha) equal to 0.0001.

The MLP network with LBFGS was configured with two (2) hidden layers with one hundred

(100) neurons each. The model used the logistic activation function (logistic) and the penalty

parameter (alpha) with a value of 0.05. In both models, the type of learning rate invscaling was

used and the maximum number of interactions equal to five hundred (500).

For the SVM algorithm, the complexity (C) was defined as one thousand (1000), the

relevance of the data closest to the separation frontier (gamma) was defined as one (1) and the

kernel used was the RBF (Radial Basis Function).

In Random Forest ten (10) trees in the forest (n_estimators) were used. The minimum

number of samples needed to split an internal node (min_samples_split) was set to ten (10).

The maximum depth of the tree (max_depth) was set to null and the number of features

considered when looking for the best split (max_features) was the square root of the number of

features.

In KNN, the number of selected neighbors (n_neighbors) was defined as three (3), and

for the distance (p) Manhattan was selected. The algorithm used to compute the nearest

neighbor (algorithm) was defined as "auto" and the weights (weights) function defined in the

prediction was the inverse of the distance.

In Naive Bayes, the largest variance of all features that are added to variances for

calculation stability (var_smoothing) was set to 1.519911e-06.

Capítulo 2. Artigo IJER em inglês 17

In the case of the Ensemble, the Voting Ensemble was adopted, which used as a

parameter of estimators for each of the algorithms mentioned above, with the best parameters

found during cross-validation.

3.0 RESULTS

In this section, the results of the evaluation of the selected algorithms for classifying

incoming traffic in the SDN topology are presented. Two different network topologies adapted

from the work of (Maia, 2006) were used.

The first network topology used is topology 1, shown in Figure 3. It is formed by forty-

eight (48) hosts, twenty-one (21) switches, and one (1) controller. The hosts were divided

between clients and servers (receivers), being twenty-four (24) clients and twenty-four (24)

servers. The bandwidth of the links between hosts and switches was set to 100Mbps.

The second network topology used is topology 2, shown in Figure 4. It is formed by

fifty (50) hosts, sixteen (16) switches, and one (1) controller. The hosts were divided between

clients and servers (receivers), being twenty-five (25) clients and twenty-five (25) servers. The

bandwidth of the links between hosts and switches was set to 100Mbps.

To carry out the analysis, a hypothesis test was used, and two hypotheses were proposed.

The null hypothesis (H0) says that the medians of the results of the algorithms using the

analyzed metric are all equal, that is, the results of all machine learning algorithms, analyzing

the metric in question, are statistically the same. Hypothesis H1 says that not all the medians of

the results of the algorithms using the analyzed metric are equal, that is, at least the result of a

machine learning algorithm, analyzing the metric in question, differs from the others.

Figure 3 - Topology 1 (Adapted from (Maia, 2006))

Capítulo 2. Artigo IJER em inglês 18

Figure 4 - Topology 2 (Adapted from (Maia, 2006))

After proposing the hypotheses, the Friedman test was applied to all selected metrics

using 5% as a significance level and 6 as a degree of freedom. If the p-value found is less than

the significance level, hypothesis H0 is rejected and the Conover post-hoc test is performed to

verify which algorithms have different results.

Thus, hypotheses were made about the metrics Accuracy, Precision, Recall, F1-Score,

model training time, and model validation time. Each of the classification algorithms was

executed 100 (one hundred) times and the algorithms used the same parameters when

processing the input data of the two topologies. For each execution of the algorithms, the input

data were separated into training and validation data, and to carry out the statistical analysis

each of the algorithms had to use the same set of data as the others in each execution.

 Tables 1 and 2 present the results of the Conover test on the metrics used. If the p-value

found is lower than the significance level divided by the number of comparisons

(0.05/21=0.00238), it is said that the two compared algorithms had different results, otherwise

they obtained similar results.

Table 1- Conover Test p-value result on the metrics used in Topology 1

Comparison Accuracy Precision Recall F1-Score Training Time Validation Time

adam – lbfgs 1,43905E-08 5,34054E-06 8,72234E-04 3,63345E-03 2,11032E-09 1,51543E-19

adam – svm 5,63385E-04 5,81806E-03 2,36003E-01 1,36650E-01 2,11032E-09 5,01569E-65

adam - random forest 3,59177E-04 1,52419E-25 5,58156E-02 9,75745E-01 1,45342E-30 6,70736E-05

adam - naive bayes 2,17318E-92 1,58540E-114 1,49921E-92 7,69300E-94 5,06263E-68 1,52419E-25

adam - k-nn 3,50428E-60 3,07783E-82 4,26390E-59 2,85772E-61 2,12517E-82 4,96544E-26

adam - ensemble 1,52556E-02 1,78423E-04 2,01930E-01 2,73966E-01 1,45342E-30 4,60385E-97

lbfgs - svm 5,27745E-19 6,85062E-02 7,06611E-06 1,22521E-05 1,45342E-30 8,91370E-22

lbfgs - random forest 1,94727E-19 4,10230E-10 1,99263E-07 3,99871E-03 2,08978E-59 6,87095E-36

lbfgs - naive bayes 3,31429E-62 2,71165E-90 7,34180E-75 2,20488E-78 4,02260E-100 4,41161E-70

lbfgs - k-nn 1,16503E-32 2,52814E-58 1,27433E-42 1,07879E-46 1,58540E-114 8,90323E-02

lbfgs - ensemble 9,70965E-04 4,11839E-01 3,90431E-02 6,85062E-02 2,11032E-09 1,81599E-48

svm - random forest 9,03205E-01 1,70342E-15 4,65683E-01 1,28838E-01 2,11032E-09 4,21052E-86

svm - naive bayes 1,05640E-110 5,82610E-100 7,79590E-99 9,91890E-102 5,89332E-38 1,35010E-122

svm - k-nn 3,18978E-78 1,04854E-67 3,49234E-65 5,68380E-69 5,24330E-51 8,59875E-16

svm - ensemble 6,08152E-09 3,15913E-01 1,40325E-02 9,96404E-03 2,08978E-59 2,11032E-09

random forest - naive bayes 2,42940E-111 4,32207E-57 1,07730E-102 1,11507E-93 3,82781E-14 1,06415E-11

random forest - k-nn 7,27979E-79 1,62071E-28 5,68380E-69 4,09008E-61 9,50817E-24 8,94891E-44

random forest - ensemble 3,01211E-09 2,11691E-12 1,47889E-03 2,87502E-01 2,92264E-91 3,55480E-118

naive bayes - k-nn 1,47411E-09 1,76442E-09 3,40713E-10 1,02665E-09 6,37685E-03 5,03098E-79

naive bayes - ensemble 1,66007E-79 1,20260E-94 8,84222E-86 4,90199E-88 8,0582E0-132 2,79940E-153

k-nn - ensemble 5,05914E-48 1,61439E-62 1,15060E-52 1,03915E-55 1,2773E-145 2,43526E-40

Capítulo 2. Artigo IJER em inglês 19

The selection of the best parameters for the selected algorithms in the scenario in

question was done through Scikit-learn (Pedregosa, et al., 2011) using GridSearch cross-

validation, where an exhaustive search was carried out on parameter values specified for each

algorithm, presenting the parameters that obtained the best results. The data collected from

topology 2 was used to perform crossvalidation, since they were obtaining the lowest values

for the selected metrics.

Table 2 - Conover Test p-value result on the metrics used in Topology 2

Comparison Accuracy Precision Recall F1-Score Training Time Validation Time

adam – lbfgs 5,13730E-09 5,42888E-03 6,57408E-04 6,57408E-04 4,48296E-10 1,52690E-22

adam – svm 3,67725E-02 1,04516E-02 1,43316E-03 1,43316E-03 4,48296E-10 1,43537E-53

adam - random forest 1,11894E-40 1,05834E-08 2,50474E-10 2,50474E-10 8,47797E-33 2,15180E-08

adam - naive bayes 1,60145E-32 2,20898E-40 1,57245E-40 1,57245E-40 8,74387E-78 1,78150E-30

adam - k-nn 3,31790E-64 1,83165E-52 1,73237E-49 1,73237E-49 3,87765E-82 1,77983E-28

adam - ensemble 1,19674E-07 2,47160E-06 9,82089E-07 9,82089E-07 8,47797E-33 1,33369E-98

lbfgs - svm 1,37788E-04 8,24402E-01 8,24402E-01 8,24402E-01 8,47797E-33 1,22604E-11

lbfgs - random forest 1,54734E-16 2,69997E-03 2,69997E-03 2,69997E-03 2,17757E-63 1,78337E-47

lbfgs - naive bayes 6,01671E-61 6,92001E-54 3,09459E-57 3,09459E-57 2,62500E-111 1,25031E-80

lbfgs - k-nn 2,06954E-95 1,14942E-66 7,87038E-67 7,87038E-67 1,27120E-115 1,36631E-01

lbfgs - ensemble 5,68338E-01 4,97461E-02 1,28495E-01 1,28495E-01 4,48296E-10 6,10080E-46

svm - random forest 2,73988E-31 1,28559E-03 1,28559E-03 1,28559E-03 4,48296E-10 5,62264E-83

svm - naive bayes 5,15324E-42 8,85889E-53 4,08807E-56 4,08807E-56 1,75043E-45 4,12450E-117

svm - k-nn 4,09424E-75 1,62289E-65 1,11225E-65 1,11225E-65 1,73237E-49 8,54797E-08

svm - ensemble 1,15218E-03 2,90483E-02 8,16469E-02 8,16469E-02 2,17757E-63 5,80968E-17

random forest - naive bayes 1,22720E-105 2,64556E-69 8,75136E-73 8,75136E-73 1,33979E-18 2,05970E-10

random forest - k-nn 1,48630E-139 1,79129E-82 1,21742E-82 1,21742E-82 1,37885E-21 7,71310E-55

random forest - ensemble 1,73060E-18 2,95755E-01 1,36631E-01 1,36631E-01 9,37481E-97 2,87700E-128

naive bayes - k-nn 1,13989E-10 1,25026E-02 6,18340E-02 6,18340E-02 4,09977E-01 1,61263E-88

naive bayes - ensemble 4,86848E-58 7,04524E-64 5,03737E-65 5,03737E-65 7,56500E-144 1,67440E-160

k-nn - ensemble 2,19341E-92 5,98438E-77 8,81924E-75 8,81924E-75 5,99960E-148 6,48206E-39

3.1 ACCURACY ANALYSIS

Table 3 presents the results of the machine learning algorithms regarding the accuracy

and the accuracy rank of the algorithms in topologies 1 and 2.

Table 3- Accuracy

 Rank (1) Accuracy (1) Rank (2) Accuracy (2)

Random Forest 636,5 99,78% 562,5 91,35%

SVM 442,0 99,64% 560,5 91,33%

MLP(LBFGS) 502,5 99,68% 409,0 91,04%

Ensemble 493,5 99,68% 463,5 91,15%

MLP(ADAM) 409,0 99,49% 503,5 91,20%

KNN 106,5 98,85% 201,0 89,55%

Naive Bayes 210,0 99,24% 100,0 74,58%

 When applying the Friedman test to the accuracies collected from the execution of the

algorithms in topology 1, a p-value of 2.08086E-91 was obtained, thus rejecting the hypothesis

H0. Therefore, through Conover's post-hoc test, presented in Table 1, it can be stated that the

SVM algorithms and the ANN of type MLP using the ADAM algorithm have similar results.

The Ensemble algorithms and the MLP using the LBFGS algorithm also showed similar results.

The other algorithms obtained different results from each other.

The Random Forest (636.5) was the algorithm that stood out the most in the accuracy

rank, referring to topology 1, shown in Table 3. Next, with similar results, are the ANN of type

MLP using the LBFGS algorithm (502.5) and the Ensemble (493.5). The SVM algorithms (442)

and the MLP using the ADAM algorithm (409) followed, which also obtained similar results.

Finally, Naive Naive Bayes (210) and KNN (106.5).

Capítulo 2. Artigo IJER em inglês 20

When applying the Friedman test to the accuracies collected from the execution of the

algorithms in topology 2, a p-value of 6.93952E-89 was obtained, thus rejecting hypothesis H0.

Therefore, through Conover's post-hoc test, presented in Table 2, it can be stated that the SVM

algorithms and the Random Forest have similar results. The MLP using the ADAM algorithm

and Ensemble also showed similar results. The other algorithms obtained different results from

each other.

The Random Forest (562.5) and SVM (560.5), with similar results, were the algorithms

that stood out in the accuracy rank, referring to topology 2, shown in Table 3. Next, with similar

results, we have the MLP using the ADAM algorithm (503.5) and the Ensemble (463.5).

Finally, the MLP uses the LBFGS algorithm (409), KNN (201), and Naive Bayes (100).

3.2 PRECISION ANALYSIS

Table 4 presents the results of the machine learning algorithms regarding the precision

and the precision rank of the algorithms in topologies 1 and 2.

Table 4- Precision

 Rank (1) Precision (1) Rank (2) Precision (2)

Random Forest 526,0 100,00% 392,5 91,41%

SVM 475,0 99,85% 527,0 91,98%

MLP(LBFGS) 478,5 99,86% 497,0 91,86%

Ensemble 509,5 99,95% 510,5 91,92%

MLP(ADAM) 434,5 99,67% 572,5 92,19%

KNN 168,5 98,94% 200,5 89,64%

Naive Bayes 208,0 99,08% 100,0 68,21%

When applying the Friedman test to the precisions collected from the execution of the

algorithms in topology 1, a p-value of 2.03667E-88 was obtained, thus rejecting the hypothesis

H0. For this reason, through Conover's post-hoc test, we can state that the Random Forest

algorithm is similar to Ensemble and the ANN of type MLP using the LBFGS algorithm. The

Ensemble, in addition to Random Forest, is similar to the ANN of type MLP using the LBFGS

algorithm and the SVM. The MLP using the LBFGS algorithm, in addition to Random Forest

and Ensemble, is also similar to MLP using the ADAM algorithm and SVM. The SVM, in

addition to the Ensemble and the MLP using the LBFGS, is also similar to the MLP using the

ADAM algorithm. The MLP using the ADAM algorithm, as said, is similar to the MLP using

the LBFGS algorithm and the SVM. Finally, Naive Bayes and KNN are similar to each other,

the other algorithms had different results.

Random Forest (526) was the algorithm that stood out the most in the precision rank

results, referring to topology 1, shown in Table 4. Posteriorly, with similar results, are the

Ensemble (509.5), the MLP using the LBFGS algorithm (478.5), SVM (475.0), MLP using the

ADAM algorithm (434.5). And the Naive Bayes (208) and the KNN (168.5).

When applying the Friedman test to the precisions collected from the execution of the

algorithms in topology 2, a p-value of 6.8256E-104 was obtained, thus rejecting the hypothesis

H0. Consequently, through Conover's post-hoc test, presented in Table 2, it can be stated that

the ANN of type MLP using the ADAM algorithm obtained similar results to the SVM. SVM,

in addition to MLP using ADAM algorithm, is similar to Ensemble and MLP using the LBFGS

algorithm. The Ensemble, in addition to SVM, is similar to MLP using LBFGS. The MLP using

Capítulo 2. Artigo IJER em inglês 21

LBFGS algorithm, as mentioned, has similar results to SVM and Ensemble. The other

algorithms obtained different results from each other.

The ANN of type MLP using the ADAM algorithm (572.5) was the algorithm that stood

out the most in the precision rank results, referring to topology 2, presented in Table 4.

Afterward, with similar results, are SVM (527), Ensemble (510.5), MLP using the LBFGS

algorithm (497), and Random Forest (392.5). Finally, KNN (200.5) and Naive Bayes (100).

3.3 RECALL ANALYSIS

Table 5 presents the results of the machine learning algorithms regarding the recall and

the recall rank of the algorithms in topologies 1 and 2.

When applying the Friedman test to recalls collected from the execution of the

algorithms in topology 1, a p-value of 7.91246E-89 was obtained, thus rejecting the hypothesis

H0. Consequently, through Conover's post-hoc test, presented in Table 1, it can be stated that

Random Forest is similar to Ensemble and MLP using the LBFGS algorithm. The Ensemble,

in addition to Random Forest, is also similar to MLP using the LBFGS algorithm and SVM.

MLP using the LBFGS algorithm, in addition to Random Forest and Ensemble, is also similar

to SVM. SVM, as already mentioned, is similar to MLP using the LBFGS algorithm and

Ensemble. And finally, Naive Bayes and KNN are similar. The other algorithms had different

results among themselves.

Random Forest (530) was the algorithm that stood out the most in the results of the

recall rank, referring to topology 1, presented in Table 5. Posteriorly, with similar results, are

Ensemble (506.5), MLP using LBFGS algorithm (482.5), and SVM (479). Continuing, the

MLP using the ADAM algorithm (428.5) which did not have similar results to any algorithm.

And finally, Naive Bayes (201.4) and KNN (172), which had similar results.

Table 5- Recall

 Rank (1) Recall (1) Rank (2) Recall (2)

Random Forest 530,0 100,00% 535,5 91,38%

SVM 479,0 99,85% 523,5 91,34%

MLP(LBFGS) 482,5 99,86% 449,0 91,03%

Ensemble 506,5 99,93% 483,0 91,17%

MLP(ADAM) 428,5 99,61% 504,0 91,24%

KNN 172,0 98,94% 205,0 89,56%

Naive Bayes 201,5 99,05% 100,0 74,63%

When applying the Friedman test to recalls collected from the execution of the

algorithms in topology 2, a p-value of 2.0309E-105 was obtained, thus rejecting hypothesis H0.

Thus, through Conover's post-hoc test, presented in Table 2, it can be stated that Random Forest

is similar to SVM and MLP using the ADAM algorithm. SVM, in addition to Random Forest,

is also similar to MLP using the ADAM algorithm and Ensemble. The MLP using the ADAM

algorithm, in addition to SVM and Random Forest, is also similar to Ensemble. Ensemble, in

addition to MLP, using the ADAM algorithm and SVM is also similar to MLP using the LBFGS

algorithm. The MLP using the LBFGS algorithm, as already mentioned, is similar to the

Ensemble. A MLP utilizando o algoritmo LBFGS, como já foi dito é semelhante ao Ensemble.

The other algorithms obtained different results from each other.

Capítulo 2. Artigo IJER em inglês 22

Random Forest (535.5) was the algorithm that stood out the most in the results of the

recall rank, referring to topology 2, presented in Table 5. Posteriorly, there is SVM (523.5),

which is similar to Random Forest, MLP using the ADAM algorithm and Ensemble. Then

follows the MLP using the ADAM algorithm (504), which is similar to SVM, Random Forest,

and Ensemble. Ensemble (483) is similar to MLP using the ADAM algorithm, SVM, and MLP

using the LBFGS algorithm. MLP using the LBFGS algorithm (449) is similar to Ensemble.

Finally, KNN (205) and Naive Bayes (100).

3.4 F1-SCORE ANALYSIS

Table 6 presents the results of the machine learning algorithms referring to the f1-score

and the f1-score rank of the algorithms in topologies 1 and 2.

Table 6- F1-Score

 Rank (1) F1-Score (1) Rank (2) F1-Score (2)

Random Forest 530,0 100,00% 507,5 91,38%

SVM 479,0 99,85% 532,5 91,48%

MLP(LBFGS) 482,5 99,86% 460,0 91,19%

Ensemble 506,5 99,93% 490,0 91,31%

MLP(ADAM) 428,5 99,58% 508,0 91,37%

KNN 172,0 98,94% 202,0 89,61%

Naive Bayes 201,5 99,05% 100,0 69,10%

When applying the Friedman test to the f1-score collected from the execution of the

algorithms in topology 1, a p-value of 7.91246E-89 was obtained, thus rejecting the hypothesis

H0. Subsequently, through Conover's post-hoc test, shown in Table 1, it can be stated that

Random Forest is similar to Ensemble and MLP using the LBFGS algorithm. Ensemble is also

similar to MLP using the LBFGS algorithm and SVM. MLP using the LBFGS algorithm, in

addition to Random Forest and Ensemble, is also similar to SVM. SVM, as already mentioned,

is similar to MLP using the LBFGS algorithm and Ensemble. Finally, Naive Bayes and KNN

are similar. The other algorithms had different results among themselves.

 Random Forest (530) was the algorithm that stood out the most in the f1-score rank

results, referring to topology 1, presented in Table 6. Posteriorly, with similar results, there is

the Ensemble (506.5), the MLP using the LBFGS algorithm (482.5), and the SVM (479). With

similar results, right after, there is the Ensemble (506.5), the MLP using the LBFGS algorithm

(482.5), and the SVM (479). Then we have the MLP using the ADAM algorithm (428.5) which

did not have similar results to any algorithm. Finally, Naive Bayes (201.4) and KNN (172),

which had similar results.

When applying the Friedman test to the f1-score collected from the execution of the

algorithms in topology 2, the p-value of 3.4897E-107 was obtained, therefore, hypothesis H0

is rejected. Subsequently, through Conover's post-hoc test, presented in Table 2, it can be stated

that the SVM obtained results similar to MLP using the ADAM algorithm, Random Forest and

Ensemble. The MLP using the ADAM algorithm, in addition to SVM, is similar to Random

Forest, Ensemble, and MLP using the LBFGS algorithm. Random Forest, in addition to SVM

and MLP using the ADAM algorithm, is also similar to Ensemble and MLP using the LBFGS

algorithm. The Ensemble algorithm, in addition to Random Forest, SVM, and MLP using the

ADAM algorithm, is also similar to MLP using the LBFGS algorithm. The MLP using the

Capítulo 2. Artigo IJER em inglês 23

LBFGS algorithm as mentioned is similar to MLP using the ADAM algorithm, Random Forest,

and Ensemble. The other algorithms obtained different results from each other.

SVM (532.5) was the algorithm that stood out the most in the f1-score rank results,

referring to topology 2, presented in Table 6. Then, with similar results, are the MLP using the

ADAM algorithm (508.0), the Random Forest (507.5), Ensemble (490), and the MLP using the

LBFGS algorithm (460). Finally, KNN (202) and Naive Bayes (100).

3.5 TRAINING TIME ANALYSIS

Table 7 presents the results of the machine learning algorithms regarding the training

time and the training time rank of the algorithms in topologies 1 and 2.

When applying the Friedman test to the training times collected from the execution of

the algorithms in topology 1, a p-value of 3.7286E-124 was obtained, thus rejecting hypothesis

H0. Consequently, through Conover's post-hoc test, presented in Table 1, it can be stated that

only the Naive Bayes and KNN algorithms had similar results.

Table 7- Training Time

 Rank (1) Training (1) Rank (2) Training (2)

Random Forest 300,0 0,054249s 300,0 0,046911s

SVM 400,0 0,685175s 400,0 2,366524s

MLP(LBFGS) 600,0 25,669977s 600,0 20,725135s

Ensemble 700,0 36,311234s 700,0 31,098941s

MLP(ADAM) 500,0 9,834175s 500,0 8,797501s

KNN 143,5 0,007560s 127,5 0,006079s

Naive Bayes 156,5 0,007811s 172,5 0,006451s

The KNN (143.5) and Naive Bayes (156.5) algorithms stood out in the results of the

training time rank, referring to topology 1, presented in Table 7. Then there are the Random

Forest (300), SVM (400), the MLP using the ADAM algorithm (500), the MLP using the

LBFGS algorithm (600), and the Ensemble (700).

When applying the Friedman test to the training times collected from the execution of

the algorithms in topology 2, a p-value of 5.9772E-125 was obtained, thus rejecting hypothesis

H0. Therefore, through the Conover post-hoc test presented in Table 2, it can be stated that only

the Naive Bayes and KNN algorithms had similar results.

The KNN (127.5) and Naive Bayes (172.5) algorithms stood out in the results of the

training time rank, referring to topology 2, presented in Table 7. Then there are the Random

Forest (300), SVM (400), the MLP using the ADAM algorithm (500), the MLP using the

LBFGS algorithm (600), and the Ensemble (700).

3.6 VALIDATION TIME ANALYSIS

Table 8 presents the results of the machine learning algorithms regarding the validation time

and the validation time rank of the algorithms in topologies 1 and 2.

Capítulo 2. Artigo IJER em inglês 24

Table 8- Validation Time

 Rank (1) Validation (1) Rank (2) Validation (2)

Random Forest 205,0 0,002749s 216,0 0,002430s

SVM 564,0 0,012541s 600,0 0,036349s

MLP(LBFGS) 455,0 0,010440s 436,0 0,008230s

Ensemble 700,0 0,065563s 700,0 0,081206s

MLP(ADAM) 294,5 0,004432s 282,0 0,003589s

KNN 478,5 0,011070s 464,0 0,008400s

Naive Bayes 103,0 0,001419s 102,0 0,001240s

When applying the Friedman test to the validation times collected from the execution

of the algorithms in topology 1, a p-value of 9.8949E-119 was obtained, thus rejecting

hypothesis H0. Therefore, through Conover's post-hoc test, presented in Table 1, it can be stated

that only the KNN and MLP algorithms using the LBFGS algorithm had similar results.

The Naive Bayes (102) obtained the best validation time followed by Random Forest

(205), MLP using the ADAM algorithm (294.5) and MLP using the LBFGS algorithm (455),

which obtained a result similar to KNN (478, 5), SVM (564) and Ensemble (700).

When applying the Friedman test to the validation times collected from the execution

of the algorithms in topology 2, a p-value of 1.0749E-122 was obtained, thus rejecting

hypothesis H0. Consequently, through Conover's post-hoc test presented in Table 2, it can be

stated that only the KNN and MLP algorithms using the LBFGS algorithm had similar results.

The Naive Bayes (103) obtained the best validation time, followed by Random Forest

(216), MLP using the ADAM algorithm (282), MLP using the LBFGS algorithm (436), which

obtained a similar result to KNN (464), SVM (600) or Ensemble (700).

4.0 DISCUSSION

Based on the results that were presented, it is clear that there is a difference about the

effectiveness of the algorithms using data from the presented SDN network topologies,

depending on the characteristics of the data collected, the result of an algorithm may be better

than the others about a certain metric. Table 9 presents the best results when applying the

hypothesis test.

Therefore, in topology 1, although Random Forest obtained results similar to other

algorithms when verifying certain metrics, it was the one that stood out the most when applying

the hypothesis test on conventional metrics (Accuracy, Precision, Recall, F1- Score).

Table 9- Best Results

 Topology 1 Topology 2

Accuracy Random Forest Random Forest, SVM

Precision Random Forest, Ensemble e MLP(LBFGS) MLP(ADAM) e SVM

Recall Random Forest, Ensemble e MLP(LBFGS) Random Forest, SVM e MLP(ADAM)

F1-Score Random Forest, Ensemble e MLP(LBFGS) SVM e MLP(ADAM)

Training KNN e Naive Bayes KNN e Naive Bayes

Validation Naive Bayes Naive Bayes

However, when analyzing the best results in topology 2, it appears that Random Forest

obtained results similar to SVM when the hypothesis test was applied to accuracy. About

Capítulo 2. Artigo IJER em inglês 25

precision, the MLP using the ADAM algorithm obtained results similar to the SVM. About

recall, the Random Forest, SVM and MLP using the ADAM algorithm obtained similar results.

In the f1-score, SVM and MLP using the ADAM algorithm obtained similar results.

Analyzing the result of the hypothesis test applied to the best model training times, KNN

and Naive Bayes obtained similar training times in both topologies. Regarding the best model

validation times, Naive Bayes obtained better results in both topologies.

Finally, through the statistical analysis carried out in this work, it can be concluded that

Random Forest was the algorithm that stood out the most in conventional metrics and that Naive

Bayes stood out about training and validation times. However, as Naive Bayes obtained

comparatively lower results, mainly in topology 2, about conventional metrics, it is concluded

that Random Forest was the algorithm with the best overall result in this work.

5.0 CONCLUSION

The objective of this work was to carry out a comparative study of machine learning

algorithms applied to traffic classification in two SDN topologies. The Mininet platform and

the Python language were used to build the two SDN topologies, and the D-ITG was used to

generate the traffic from the hosts. Through the data collected by tcpdump and processed by

the measurement program, a file was generated with the training and validation patterns that

were used by the machine learning algorithms. The performance of the classifiers was evaluated

using the conventional metrics of accuracy, precision, recall, and f1-score, in addition to

training and validation times. Statistical analysis was carried out by applying the Friedman test

and Conover's post-hoc test on the result of conventional metrics and training and validation

times. It can be concluded that Random Forest was the algorithm that stood out the most in

terms of conventional metrics and that Naive Bayes stood out in terms of training and validation

times. However, as Naive Bayes obtained comparatively inferior results, mainly in topology 2,

about conventional metrics, it is concluded that Random Forest was the algorithm with the best

overall result in this work.

As future works, it is intended to perform a quality of service analysis on the traffic of

SDN topologies using the classification data. It is also intended to add new network topologies

aiming at new comparisons in the classifiers. Finally, perform a case study to verify the

effectiveness of better load balancing based on data generated by machine learning algorithms.

Capítulo 2. Artigo IJER em inglês 26

REFERENCES

Amaral, P., Dinis, J., Pinto, P., Bernardo, L., Tavares, J., & Mamede, H. (12 de 2016).

Machine learning in software defined networks: Data collection and traffic

classification. IEEE International Conference on Network Protocols.

Badhani, S., & Muttoo, S. (2019). Cendroid—a cluster-ensemble classifier for detecting

malicious android applications. Computers Security, 85, pp. 25–40.

Bakker, J., Ng, B., Seah, W., & Pekar, A. (2019). Traffic classification with machine learning

in a live network. IFIP/IEEE Symposium on Integrated Network and Service

Management (IM), pp. 488–493.

Bisol, R., Silva, A., Machado, C., Granville, L., & Schaeffer-Filho, A. (2016). Coleta e

análise de características de fluxo para classificação de tráfego em redes definidas por

software. XXXIV Simpósio Brasileiro de Redes de Computadores e Sistemas

Distribuídos.

Boser, B., Guyon, I., & Vapnik, V. (07 de 1992). A training algorithm for optimal margin

classifiers. Annual Workshop on Computational Learning Theory (COLT’92) , pp.

144–152.

Botta, A., Dainotti, A., & Pescapé, A. (2012). A tool for the generation of realistic network

workload for emerging networking scenarios. Computer Networks, 56(15), pp. 3531–

3547.

Bužic, D., & Dobša, J. (2018). Lyrics classification using naive bayes. International

Convention on Information and Communication Technology, Electronics and

Microelectronics (MIPRO), pp. 1011–1015.

Cardoso, W. S., Silva, F., Rocha, U., & Sousa, M. (2017). Implantação de um patch panel

virtual utilizando redes definidas por software. Anais Estendidos do XXIII Simpósio

Brasileiro de Sistemas Multimídia e Web, pp. 95–98.

Chomboon, K., Chujai, P., Teerarassammee, P., Kerdprasop, K., & Kerdprasop, N. (01 de

2015). An empirical study of distance metrics for k-nearest neighbor algorithm.

International Conference on Industrial Application Engineering, pp. 280–285.

Commiters, A. (04 de 2021). Motor de análise unificado ultrarrápido.

Ding, L., Yu, F., Peng, S., & Xu, C. (4 de 2013). A classification algorithm for network traffic

based on improved support vector machine. Journal of Computers, 8.

Edla, D., Mangalorekar, K., Dhavalikar, G., & Dodia, S. (2018). Classification of eeg data for

human mental state analysis using random forest classifier. International Conference

on Computational Intelligence and Data Science, 132, pp. 1523–1532.

Fan, Z., & Liu, R. (2017). Investigation of machine learning based network traffic

classification. International Symposium on Wireless Communication Systems

(ISWCS), pp. 1–6.

Farhady, H., Lee, H., & Nakao, A. (2015). Software-defined networking: A survey. Computer

Networks, 81, pp. 79–95.

Capítulo 2. Artigo IJER em inglês 27

Ferreira, F. R. (2004). O uso de rede neural artificial mlp na predição de estruturas

secundárias de proteínas. Master’s thesis, Universidade Estadual Paulista, Instituto de

Biociências, Letras e Ciências Exatas, São José do Rio Preto.

Firmino, M. (2015). Testes de hipóteses: uma abordagem não paramétrica. Master’s thesis,

Universidade de Lisboa, Faculdade de Ciências, Departamento de Estatística e

Investigação Operacional.

Gandhi, I., & Pandey, M. (2015). Hybrid ensemble of classifiers using voting. International

Conference on Green Computing and Internet of Things (ICGCIoT), pp. 399–404.

García-Pedrajas, N., Romero del Castillo, J., & Cerruela-García, G. (2017). A proposal for

local k values for k -nearest neighbor rule. IEEE Transactions on Neural Networks

and Learning Systems, 28(2), pp. 470–475.

Haykin, S. (2001). Redes Neurais: princípios e práticas.

Jedari, E., Wu, Z., Rashidzadeh, R., & Saif, M. (2015). Wi-fi based indoor location

positioning employing random forest classifier. International Conference on Indoor

Positioning and Indoor Navigation (IPIN), pp. 1–5.

Kim, H., & Feamster, N. (02 de 2013). Improving network management with software

defined networking. IEEE Communications Magazine, 51, pp. 114–119.

Kokila, R., Selvi, S. T., & Govindarajan, K. (2014). Ddos detection and analysis in sdn-based

environment using support vector machine classifier. Sixth International Conference

on Advanced Computing (ICoAC), pp. 205–210.

Maia, N. (2006). Engenharia de Tráfego em Domínio MPLs utilizando Técnicas de

Inteligência Computacional. PhD thesis, Universidade Federal de Minas Gerais, Belo

Horizonte, MG, Brasil.

Mininet Team. (03 de 2021). Mininet: An instant virtual network on your laptop (or other pc)

- mininet.

Pandas Development Team. (03 de 2021). pandas - python data analysis library.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . .

Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine

Learning Research, 12, pp. 2825–283.

Saqlain, M., Jargalsaikhan, B., & Lee, J. (2019). A voting ensemble classifier for wafer map

defect patterns identification in semiconductor manufacturing. IEEE Transactions on

Semiconductor Manufacturing, 32(2), pp. 171–182.

SDN Hub Team. (03 de 2021). All-in-one sdn app development starter vm | sdn hub.

Singh, A., Halgamuge, M., & Lakshmiganthan, R. (2017). Impact of different data types on

classifier performance of random forest, naïve bayes, and k-nearest neighbors

algorithms. International Journal of Advanced Computer Science and Applications,

8(12).

Capítulo 2. Artigo IJER em inglês 28

Vaidya, J., Shafiq, B., Basu, A., & Hong, Y. (2013). Differentially private naive bayes

classification. IEEE/WIC/ACM International Joint Conferences on Web Intelligence

(WI) and Intelligent Agent Technologies (IAT),, 1, pp. 571–576.

Vapnik, V. (1995). The Nature of Statistical Learning Theory.

Vapnik, V. (1998). Statistical Learning Theory.

Vapnik, V., & Chervonenkis, A. (1971). On the uniform convergence of relative frequencies

of events to their probabilities. Theory of Probability and its Applications, 16, pp.

264–280.

Vieira, Z., & Bauchspiess, A. (03 de 2016). Implementação do servocontrole autosintonizado

em tempo-real utilizando rede perceptron multicamadas. pp. 308–313.

Wu, Z., Xu, Q., Li, J., Fu, C., Xuan, Q., & Xiang, Y. (2018). Passive indoor localization

based on csi and naive bayes classification. IEEE Transactions on Systems, Man, and

Cybernetics: Systems, 48, pp. 1566–1577.

Capítulo 2. Artigo IJER em inglês 29

30

3 Considerações Finais

Este trabalho teve como objetivo apresentar estudos de classificação de tráfego
em redes definidas por software. Utilizou-se a plataforma Mininet e a linguagem Python
para construção das topologias SDN, sendo que o D-ITG foi utilizado para a geração
do tráfego dos hosts. Foi construído um programa na linguagem Python para medição
do tráfego das aplicações entrantes na topologia SDN. Através dos dados coletados pelo
tcpdump e processados pelo programa de medição (promed) foi construído um arquivo
com os padrões de treinamento e validação que foram utilizados pelos algoritmos de
machine learning. O desempenho dos classificadores foi avaliado principalmente através das
métricas convencionais, ou seja, acurácia, precisão, revocação e f1-score. Posteriormente
foram adicionados como métrica os tempos de treino e validação do modelo, além de
uma análise estatística através da aplicação do teste de Friedman e do teste post-hoc
de Conover sobre o resultado das métricas convencionais e dos tempos de treinamento e
validação. Pode-se concluir que o Random Forest foi o algoritmo com melhor resultado
geral neste trabalho. Vale ressaltar que os resultados apresentados aqui são válidos para
as topologias de rede utilizadas nos trabalhos e que em outras topologias os resultados
poderiam ser diferentes dos apresentados nesses trabalhos.

Como trabalhos futuros pretende-se fazer uma análise de qualidade de serviço
sobre o tráfego das topologias SDN utilizando os dados da classificação. Pretende-se
também adicionar novas topologias de rede visando novas comparações nos classificadores.
Finalmente, realizar um estudo de caso para verificar a eficácia do melhor balanceamento
de carga com base nos dados gerados pelos algoritmos de machine learning.

	UM ESTUDO COMPARATIVO DE ALGORITMOS BASEADOS EM APRENDIZADO DE MÁQUINA PARA CLASSIFICAÇÃO DE TRÁFEGO EM REDES DEFINIDAS POR SOFTWARE
	Folha de rosto

	Folha_aprovacao_preenchida_Victor
	UM ESTUDO COMPARATIVO DE ALGORITMOS BASEADOS EM APRENDIZADO DE MÁQUINA PARA CLASSIFICAÇÃO DE TRÁFEGO EM REDES DEFINIDAS POR SOFTWARE
	Agradecimentos
	Resumo
	Abstract
	Sumário
	Introdução
	Artigo IJER em inglês
	Considerações Finais

